FÍSICA GRACELI TENSORIAL QUÂNTICA.





equação Graceli  quântica []

1 /  P /  /


 G* =  = [          ] ω   / T] / c [    [x,t] ]  =  





 



equação Graceli  tensorial quântica [1]
1 /  P /  /

  [DR] =            . =  

 = tensor energia momentum

 = tensor quântico de Graceli.

/


equação Graceli  tensorial quântica [2]


1 /  P /  /

 G  [DR] =            .  

+  G* =  = [          ] ω   / T] / c [    [x,t] ]  =  




 

1 /  P /  /

    G  [DR] =             =



1 /  P /  /

 G  [DR] =          =


EQUAÇÃO QUÂNTICA TENSORIAL GRACELI.


1 /  P /  /

  G  [DR] =            .


 [DR]  = É O TENSOR   GRACELI TENSÃO ENERGIA DE FLUXOS DE DILATAÇÕES E RETRAÇÕES COM CURVATURAS E SIMÉTRICO .

 [DR]  = É O TENSOR   GRACELI TENSÃO ENERGIA DE FLUXOS DE DILATAÇÕES E RETRAÇÕES COM CURVATURAS E SIMÉTRICO .


1 /  P /  /

     G  [DR] =             =




1 /  P /  /

 G  [DR] =         =


 [DR]  = É O TENSOR   GRACELI TENSÃO ENERGIA DE FLUXOS DE DILATAÇÕES E RETRAÇÕES COM CURVATURAS E SIMÉTRICO .

 [DR]  = É O TENSOR   GRACELI TENSÃO ENERGIA DE FLUXOS DE DILATAÇÕES E RETRAÇÕES COM CURVATURAS E SIMÉTRICO .


1 /  P /  /

    ] ω    =








FÍSICA GRACELI TENSORIAL QUÂNTICA.





equação Graceli  quântica []

1 /  P /  /


 G* =  = [          ] ω   / T] / c [    [x,t] ]  =  





 



equação Graceli  tensorial quântica [1]
1 /  P /  /

  [DR] =            . =  

 = tensor energia momentum

 = tensor quântico de Graceli.

/


equação Graceli  tensorial quântica [2]


1 /  P /  /

 G  [DR] =            .  

+  G* =  = [          ] ω   / T] / c [    [x,t] ]  =  




 

1 /  P /  /

    G  [DR] =             =



1 /  P /  /

 G  [DR] =          =


EQUAÇÃO QUÂNTICA TENSORIAL GRACELI.


1 /  P /  /

  G  [DR] =            .


 [DR]  = É O TENSOR   GRACELI TENSÃO ENERGIA DE FLUXOS DE DILATAÇÕES E RETRAÇÕES COM CURVATURAS E SIMÉTRICO .

 [DR]  = É O TENSOR   GRACELI TENSÃO ENERGIA DE FLUXOS DE DILATAÇÕES E RETRAÇÕES COM CURVATURAS E SIMÉTRICO .


1 /  P /  /

     G  [DR] =             =




1 /  P /  /

 G  [DR] =         =


 [DR]  = É O TENSOR   GRACELI TENSÃO ENERGIA DE FLUXOS DE DILATAÇÕES E RETRAÇÕES COM CURVATURAS E SIMÉTRICO .

 [DR]  = É O TENSOR   GRACELI TENSÃO ENERGIA DE FLUXOS DE DILATAÇÕES E RETRAÇÕES COM CURVATURAS E SIMÉTRICO .


1 /  P /  /

    ] ω    =










FÍSICA GRACELI TENSORIAL QUÂNTICA.





equação Graceli  quântica []

1 /  P /  /


 G* =  = [          ] ω   / T] / c [    [x,t] ]  =  





 



equação Graceli  tensorial quântica [1]
1 /  P / /

  [DR] =            . =  

 = tensor energia momentum

 = tensor quântico de Graceli.

/


equação Graceli  tensorial quântica [2]


1 /  P /  /

 G  [DR] =            .  

+  G* =  = [          ] ω   / T] / c [    [x,t] ]  =  




 

1 /  P /  /

    G  [DR] =             =



1 /  P /  /

 G  [DR] =          =


EQUAÇÃO QUÂNTICA TENSORIAL GRACELI.


1 /  P /  /

  G  [DR] =            .


 [DR]  = É O TENSOR   GRACELI TENSÃO ENERGIA DE FLUXOS DE DILATAÇÕES E RETRAÇÕES COM CURVATURAS E SIMÉTRICO .

 [DR]  = É O TENSOR   GRACELI TENSÃO ENERGIA DE FLUXOS DE DILATAÇÕES E RETRAÇÕES COM CURVATURAS E SIMÉTRICO .


1 /  P /  /

     G  [DR] =             =




1 /  P /  /

 G  [DR] =         =


 [DR]  = É O TENSOR   GRACELI TENSÃO ENERGIA DE FLUXOS DE DILATAÇÕES E RETRAÇÕES COM CURVATURAS E SIMÉTRICO .

 [DR]  = É O TENSOR   GRACELI TENSÃO ENERGIA DE FLUXOS DE DILATAÇÕES E RETRAÇÕES COM CURVATURAS E SIMÉTRICO .


1 /  P /  /

    ] ω    =






FÍSICA GRACELI TENSORIAL QUÂNTICA.





equação Graceli  quântica []

1 /  P /  /


 G* =  = [          ] ω   / T] / c [    [x,t] ]  =  





 



equação Graceli  tensorial quântica [1]
1 /  P / /

  [DR] =            . =  

 = tensor energia momentum

 = tensor quântico de Graceli.

/


equação Graceli  tensorial quântica [2]


1 /  P /  /

 G  [DR] =            .  

+  G* =  = [          ] ω   / T] / c [    [x,t] ]  =  




 

1 /  P / /

    G  [DR] =             =



1 /  P /  /

 G  [DR] =          =


EQUAÇÃO QUÂNTICA TENSORIAL GRACELI.


1 /  P / /

  G  [DR] =            .


 [DR]  = É O TENSOR   GRACELI TENSÃO ENERGIA DE FLUXOS DE DILATAÇÕES E RETRAÇÕES COM CURVATURAS E SIMÉTRICO .

 [DR]  = É O TENSOR   GRACELI TENSÃO ENERGIA DE FLUXOS DE DILATAÇÕES E RETRAÇÕES COM CURVATURAS E SIMÉTRICO .


1 /  P / /

     G  [DR] =             =




1 /  P / /

 G  [DR] =         =


 [DR]  = É O TENSOR   GRACELI TENSÃO ENERGIA DE FLUXOS DE DILATAÇÕES E RETRAÇÕES COM CURVATURAS E SIMÉTRICO .

 [DR]  = É O TENSOR   GRACELI TENSÃO ENERGIA DE FLUXOS DE DILATAÇÕES E RETRAÇÕES COM CURVATURAS E SIMÉTRICO .


1 /  P / /

    ] ω    =







Na física, o Princípio de Hamilton, por vezes conhecido como Princípio de Mínima Ação, ou popularmente por princípio do menor esforço, estabelece que a ação - uma grandeza física com dimensão equivalente à de energia multiplicada pela de tempo (joule-segundo no Sistema Internacional de Unidades) - possui um valor estacionário, seja ele máximo, mínimo ou um ponto de sela para a trajetória que será efetivamente percorrida pelo sistema em seu espaço de configuração.[Ref. 1]

Embora por alguns inadequadamente assumido como um princípio de mínima ação - talvez por razões históricas atrelada as primeiras proposições de princípio semelhante, entre outros por Pierre-Louis Moreau de Maupertuis - a condição extrema da ação conforme postulada pelo princípio de Hamilton nem sempre é caracterizada pela condição de mínimo. A presença de uma condição de máximo, mínimo ou sela deve a rigor ser determinada a posteriori - após conhecida a trajetória que extremiza a ação - entre outros mediante o uso do teorema de Morse, a exemplo.[Ref. 2]

O princípio de Hamilton é um pressuposto básico da mecânica clássica e da mecânica relativista para descrever a evolução ao longo do tempo tanto do movimento de uma partícula ou sistema de partículas como de um campo físico. Também em mecânica quântica, Paul M. Dirac,[Ref. 3] seguido por Julian Schwinger[Ref. 4] e Richard Feynman[Ref. 5] construíram formulações inspiradas nesse princípio.

Histórico

A primeira formulação formal de um princípio de extremo no campo da mecânica se deve a Pierre-Louis Moreau de Maupertuis (1744), que disse que a "natureza é econômica em todas as suas ações". Seu princípio extremizava o que hoje se conhece por ação reduzida, que envolvia apenas um termo diretamente proporcional à energia cinética, e não a lagrangiana conforme hoje encontrada no princípio de Hamilton. A ideia geral é contudo antiga, e há milênios Heros de Alexandria (10 -70 DC) já havia proposto o conceito de raios de luz e que essa viaja sempre em linha reta quando em meio homogêneo, em clara alusão a um princípio de menor distância entre dois pontos; princípio no futuro ampliado por Pierre de Fermat, que introduziu a ideia de que os raios de luz, em situações ópticas tais como a refração e a reflexão, seguem um princípio de menor tempo, princípio esse válido ainda hoje e atualmente conhecido como princípio de Fermat em sua homenagem.[Ref. 2]

Em termos históricos D'Alembert havia formulado um ano antes o princípio de d'Alembert e o conceito de trabalho virtual, o que permitiu generalizar-se as leis de Newton no que denomina-se atualmente por mecânica lagrangiana, fazendo-o de forma a permitir cálculos com escalares ao invés de vetores e a resolução de problemas envolvendo vínculos, cujas forças não são a priori conhecidas, entre outros. A mecânica de Lagrange conduziu automaticamente a equações notoriamente vinculadas ao princípio de extremo.[Ref. 6]

Entre os que deram prosseguimento ao desenvolvimento da idéia de Maupertuis se incluem Euler e Leibniz. A formulação moderna do princípio de extremo no campo da mecânica conforme hoje adotada, com base na lagrangiana L = T - U, deve-se contudo a William Rowan Hamilton (1805-1865).[Ref. 2]

Partindo-se do princípio de extremização da ação, esse conduz diretamente à formulação hamiltoniana e por conseguinte, via Transformada de Legendre e/ou formalismo matemático adequado, também à formulação lagrangiana da mecânica clássica.[Ref. 6]

Ainda que sejam em princípio mais difíceis de se aprender, sobretudo devido à matemática atrelada, o formalismo lagrangeano e hamiltoniano têm a vantagem que suas cosmovisões são mais aplicáveis à teoria da relatividade e à mecânica quântica do que as leis de Newton; entre outros por darem enfase a grandezas escalares como energias cinética e potencial, e não às vetoriais como força e aceleração, embora não obstantes ainda presentes, se necessário.

Formulação

A integral de ação para partículas

A formulação do princípio para um sistema lagrangeano é estabelecido em um sistema de coordenadas generalizadas, que podem ou não corresponder a coordenadas do sistema cartesiano, esférico ou polar típicos, sobre o espaço de configuração - ou sobre uma parte do mesmo chamada carta local. A adoção de coordenadas atípicas ocorre quase sempre quando há vínculos no sistema, o que geralmente permite a redução do número de graus de liberdade do mesmo.

De todas as trajetórias possíveis que transcorrem entre o instante t1 e t2 levando o sistema de uma configuração inicial 1 a uma configuração final 2 associadas, o sistema percorrerá aquela que extremize - em grande parte dos casos a que minimiza - a ação S. A magnitude da ação atrelada a cada trajetória é determinável pela integral:

 [Ref. 1] [Ref. 2] [Ref. 6]


em que:

 são as coordenadas paramétricas de uma trajetória possível.
 é a função lagrangiana do sistema, definida por L = T - U, com T representando a energia cinética e U a energia potencial generalizada do sistema.


O problema resume-se, pois, em encontrar as equações horárias  para as coordenadas, e por conseguinte as equações para , que extremizem . Isto é, procura-se por funções que extremizem o funcional S. Para encontrar tais funções há um ferramental matemático específico denominado cálculo variacional.[Ref. 6]

Equações de Euler-Lagrange para partículas

Pode-se demonstrar, mediante princípios variacionais, que de todas as trajetórias possíveis, a que implica um mínimo (ou, mais apropriadamente, uma condição estacionária) para a expressão anterior é a que implica, para todo i, a seguinte situação:

 [Ref. 1] [Ref. 2] [Ref. 6]


ou seja, que a variação  da ação seja zero para desvios de caminhos diferencialmente próximos ao caminho efetivamente seguido para o sistema no espaço de configurações, seja esse qual for. Trata-se de um raciocínio semelhante ao empregado em funções elementares, onde, nos pontos extremos, a primeira derivada da função anula-se. O raciocínio mostra-se aqui, contudo, estendido ao domínio dos funcionais.

Desta expressão deduzem-se as equações de Euler-Lagrange, dentre elas:


 [Ref. 1] [Ref. 2] [Ref. 6]


a partir das quais, uma vez conhecida a lagrangiana do sistema como função das coordenadas generalizadas, pode-se determinar as equações diferenciais que levam diretamente aos  procurados.






Na mecânica clássica, a função de Lagrangelagrangiana (português brasileiro) ou lagrangiano (português europeu) () de um sistema é uma função expressa em termos das coordenadas generalizadas , da taxa de variação dessas coordenadas (velocidades generalizadas e do tempo t, e dada matematicamente pela diferença entre a energia cinética () e a energia potencial generalizada () do sistema:

.[Ref. 1][Ref. 2][Ref. 3]

Por padrão a energia potencial é função apenas das coordenadas generalizadas (sistemas conservativos) e/ou do tempo, contudo, a exemplo do que observa-se para o caso eletromagnético, quando na forma adequada, admite-se o uso de um potencial "generalizado", que é função também das velocidades generalizadas. O potencial eletromagnético generalizado[1][Ref. 3] permite a descrição de partículas elétricas imersas em campos eletromagnéticos via Mecânica de Lagrange, a exemplo. Forças dissipativas proporcionais às velocidades generalizadas também são admissíveis via potenciais dissipativos, a exemplo o potencial dissipativo de Rayleigh.[2][3] [Ref. 3]

A lagrangiana é termo central na integral temporal que define o que se denomina em Física por ação. Diferente da Mecânica de Newton, junto com o princípio de Hamilton da ação em extremo, a lagrangiana e a Mecânica de Lagrange definem toda a dinâmica de um sistema sem recorrer a vetores e diagramas vetoriais, fazendo-o de forma a usar essencialmente funções escalares. Nesses termos a lagrangiana porta-se como uma equação fundamental do sistema a qual associa-se, encerrando em si todas as informações acerca do sistema. Pode-se pois, a partir dela e do formalismo atrelado à Mecânica de Lagrange, obter qualquer informação desejada acerca do sistema. A lagrangiana possui dimensões de energiajoules no S.I..[Ref. 1][Ref. 2][Ref. 3]

Associado à lagrangiana de um sistema, via Transformada de Legendre, tem-se o hamiltoniano  do sistema, essa uma função das coordenadas generalizadas , dos momentos conjugados generalizados  e do tempo t. O Hamiltoniano , definido por H = T + U, também caracteriza uma equação fundamental, e juntamente com o formalismo da Mecânica de Hamilton, constitui formalismo alternativo plenamente equivalente ao de Lagrange no que tange à descrição da dinâmica do sistema.[Ref. 2] Tais formalismos encontram importante aplicação também dentro da relatividade.[Ref. 4]

Embora amplamente aplicada ao campo da dinâmica de energia e matéria, o cálculo variacional não limita o raciocínio à campos específicos da Física. Diversos problemas nas mais variadas áreas mostram-se suscetíveis ao tratamento similar.

Comentários

Postagens mais visitadas deste blog